Témata
Zdroj: FS ČVUT v Praze

160 let strojařského vzdělávání v Praze: Bezuhlíková perspektiva budoucnosti

Dekarbonizace energetiky a průmyslu ve vazbě na Green Deal 2050 je v současnosti jedním z hlavních celospolečenských a politických témat. Ta ve výsledku určují směr technologického vývoje, vědy a výzkumu.

Tento článek je součástí seriálu:
160 let strojařského vzdělávání v Praze
Díly
Prof. Jan Hrdlička

FS ČVUT v Praze

Doc. Lukáš Krátký

FS ČVUT v Praze

Reklama

Problematika se často nekriticky zužuje na elektrifikaci či vodíkové technologie s vazbou na obnovitelné zdroje energie (ve zkratce OZE), je však potřeba si uvědomit, že potenciál těchto obnovitelných zdrojů je v ČR omezený z důvodu relativně nepříznivých podnebných a geografických podmínek.

Je také potřeba zmínit, že nejvýznamnějším OZE v ČR je paradoxně biomasa, tedy ve svém původu typicky pevný biologický materiál, který musí podstoupit další transformace k zisku užitečné formy energie, které jsou zatížené účinnostmi nezbytných přeměn. Její podíl na výrobě elektřiny z OZE v ČR je cca 50 %, na výrobě tepla v centralizovaných systémech pak cca 90 %. Zvyšování míry jejího využívání se začíná dostávat do střetu s jejím dostupným potenciálem a potravinovou bezpečností.

Modelová laboratorní absorpční jednotka pro záchyt CO2 s regenerací absorpčního činidla v TRL4 dle návrhu Ústavu procesní a zpracovatelské techniky FS ČVUT v Praze. (Zdroj: FS ČVUT v Praze)

V médiích se vyskytující pejorativní výklad zkratky OZE jako „občasné zdroje energie“ pro ostatní druhy OZE, typicky zužované na solární a větrnou energii, je ve svém důsledku relativně přiléhavý a reflektuje velkou, obtížně predikovatelnou variabilitu těchto druhů OZE a jejich omezený potenciál. Zvyšování podílu OZE na úkor stabilních zdrojů jako prostředek dekarbonizace zejména ve výrobě elektřiny pak nutně znamená vnášení vyššího podílu prvku nestability, který je nutné kompenzovat záložními (fosilními) zdroji, akumulací, popř. importem.

Systematický výzkum

Pokud je skutečně celospolečenským cílem snižovat emise CO2 do ovzduší, bez ohledu na různá dogmata, je možné k problematice přistoupit i jiným způsobem, aniž by bylo nutné vzdát se dostupných a stabilních energetických zdrojů. CO2 ve své podstatě pochází z oxidace všech paliv na bázi uhlovodíků (jiná, vyjma výše zmíněného vodíku, ani neexistují), ale také z některých průmyslových procesů, jako je např. výroba cementu.

Reklama
Reklama
Reklama

Smyslem dekarbonizačních technologií z tohoto pohledu je v určité fázi konverze paliva na užitečnou energii nebo v průmyslovém procesu oxid uhličitý zachytit, zpracovat, a následně uložit (CCS), a tím zabránit jeho uvolnění do atmosféry, popřípadě jej dále využít jako surovinu, například pro výrobu chemikálií nebo syntetických paliv (CCU). CO2 může při energetických konverzích vznikat relativně velké množství. Například z 1 kg severočeského hnědého uhlí vznikne jeho spálením přibližně 1,6 kg CO2, z 1 m3N zemního plynu je to přibližně 0,7 kg. Jako průmyslový příklad lze vzít výrobu páleného vápna v cementárnách, kde z 1 kg vstupní suroviny (vápence) vznikne přibližně 2,2 m3N CO2 (4,3 kg). Jestliže se např. ročně v ČR energeticky využije cca 2,5 mil. tun hnědého uhlí, znamená to vypuštění do ovzduší asi 2 mil. m3N CO2, což odpovídá hodnotě asi 3,9 mil. tun.

Segment průmyslového trubkového fotobioreaktoru v TRL8 v laboratořích Ústavu procesní a zpracovatelské techniky FS ČVUT v Praze. (Zdroj: FS ČVUT v Praze)

Fakulta strojní se k tomuto celospolečenskému cíli ve své každodenní vědecko-výzkumné i vzdělávací činnosti staví odpovědně a takovým způsobem, aby společnosti dokázala poskytnout technologie i lidské zdroje. Příkladem může být vznik centra Bio-CCS/U v roce 2018, které bylo jedinou integrovanou výzkumnou platformou, jež se v ČR systematickému výzkumu v oblasti CCS/CCU věnovala, a zahrnovalo další partnery mimo fakultu i univerzitu.

Konkrétní zařízení

Ačkoliv původní realizační fáze centra skončila v roce 2023, výstupy, které v rámci něj vznikly, znamenaly výrazný posun v úrovni technologií CCU. Jedním z nejvýznamnějších úspěchů v realizaci experimentálních zařízení je fluidní oxyfuel spalovací systém, označovaný pracovně jako „Golem“. Jde o technologii, která umožňuje získat přímo prakticky čistý CO2 z energetické konverze biomasy i jiných paliv v rámci jednoho procesu. Systém, navržený a zrealizovaný výzkumným týmem Bio-CCS/U, je jediným v ČR, a patří mezi několik málo velkých výzkumných infrastruktur i v evropském kontextu. Se svojí velikostí 0,5 MW tepelného příkonu umožňuje validaci laboratorních výsledků na pilotní úroveň, která je ověřovacím předstupněm pro skutečnou realizaci.

Model vsádkového mechanicky míchaného chemického reaktoru v laboratořích Ústavu procesní a zpracovatelské techniky FS ČVUT v Praze. (Zdroj: FS ČVUT v Praze)

Dekarbonizační aktivity pak navázaly v podobě dalších projektů. V oblasti post-combustion technologií, tedy těch určených pro zachycení CO2 až po realizaci energetické konverze paliva, je to například nízkoteplotní adsorpce. Tyto technologie mají potenciální výhodu v tom, že je lze ke stávajícím energetickým nebo průmyslovým provozům připojit, aniž by bylo do větší míry nutné zasahovat do původní technologie. Významnou nevýhodou je pak to, že pracují s odpadním plynem, kterého je obecně relativně velké měrné množství ve vztahu k množství použitého paliva, a zároveň je v něm relativně nízká koncentrace CO2, která typicky nepřekračuje přibližně 15 obj. %, ale velmi často je i podstatně nižší. To vyžaduje sofistikované přístupy k jeho separaci, často vyžadující kombinaci různých technologií.

Významným příspěvkem Fakulty strojní je realizace experimentálního VPSA adsorbéru na úrovni TRL5, který umožňuje proces zkoumat v reálném měřítku s reálným odpadním plynem, a výsledky tak umožní využít v praxi.

Reklama

Další možnosti

Současné výsledky výzkumu a vývoje nabízejí možnosti, jak efektivně snížit množství emitovaného CO2 prostřednictvím technologií pro jeho záchyt a využití (Carbon Capture and Utilization, CCU). Jen pro představu, roční emise CO2 do ovzduší z energetiky a zpracovatelského průmyslu se v Česku v roce 2022 pohybovaly okolo 95∙106 tun.

Primárním emitentem CO2 v Česku je energetika s podílem 48 %, následuje doprava se 17 %, zpracovatelský a stavební průmysl s 15 %, budovy s 10 %, zemědělství se 6 % a technologie zpracování odpadu se 4 %. Zachycený emisní CO2 lze jako surovinu transformovat pomocí různých chemických, elektrochemických, fotochemických nebo biochemických procesů na pokročilá biopaliva (např. metan, etanol a butanol), zelené chemické látky (např. močovinu, metanol a kyselinu mravenčí) nebo stavební materiály (různé typy uhličitanů). Jakákoliv technologie záchytu a využití emitovaného CO2 se skládá ze tří technologických celků – záchyt CO2, transformace CO2 na biopalivo a zelené chemikálie, separace a zušlechtění produktů. Je nutné si uvědomit, že emitovaný CO2 je pouze jednou z chemických složek spalin a průmyslových odpadních plynů. Současná technická praxe nabízí možnosti záchytu CO2 pomocí absorpce, PSA adsorpce, kryogeniky nebo membránové separace, vše v úrovni technické vyspělosti TRL > 6. Cena záchytu CO2 se běžně pohybuje v desítkách až stovkách eur za tunu CO2 v závislosti na jeho obsahu v emisním plynu a požadované čistotě CO2.

Experimentální oxy-fuel multipalivový spalovací systém s bublinkovou fluidní vrstvou na úrovni TRL6, Ústav energetiky FS ČVUT v Praze. (Zdroj: FS ČVUT v Praze)

Chemická transformace CO2-to-X, biochemická transformace CO2-to-X a mineralizace CO2 patří mezi perspektivní technologie využití emisního CO2 v průmyslovém měřítku. V kontextu chemické transformace molekula CO2 reaguje s potřebnými ekvivalenty vodíku, a vzniká tak metan, metanol, kyselina mravenčí, močovina nebo syntézní plyn pro následnou Fischer-Tropsch reakci výroby leteckého paliva (Sustainable Air Fuel).

Chemická transformace CO2-to-X se v současné době pohybuje na úrovni technické vyspělosti TRL7. Za zmínku stojí technologie The Jupiter 1000 (25 Nm3.h−1 e-metan, Fos-sur-Mer, Francie), ETL technology (100 000 t.r−1 e-metanol, Anyang, Čína) nebo SAF Neste Corporation (100 000 t SAF ročně, Rotterdam, Nizozemsko). Rozvoji chemických CO2-to-X technologií v průmyslovém měřítku však brání nízká konverze CO2-to-X, nedostatek demonstračních zařízení, nedostatek pobídek ke snižování emisí CO2 a vysoké výrobní náklady. Biochemická transformace CO2-to-X je založena na fotosyntetické fixaci 1,83 t CO2 do 1 t mikrořas, které jsou nejčastěji kultivovány v korytových, deskových nebo v trubkových fotobioreaktorech. Typickými mikrořasovými produkty jsou biooleje, proteiny, bioetanol, bioplyn, biovodík, zelené chemikálie, přísady, potraviny a krmiva, hnojiva a paliva v závislosti na druhu řas a čistotě zpracovávaného CO2. Jedná se však o energeticky velmi náročnou technologii, která má zároveň velké nároky na zastavěnou plochu. Demo ukázkou TRL7 biochemické konverze CO2-to-etanol je LanzaTech (80∙106 l EtOH.r−1, Ghent, Belgie). Posledním perspektivním směrem koncepce CO2-to-X je minerální karbonizace. Jedná se o proces, při kterém CO2 reaguje s přírodními rudními minerály za vzniku minerálních uhličitanů, jako je uhličitan vápenatý a uhličitan hořečnatý, které nacházejí své uplatnění ve stavebnictví. K fixaci 1 t CO2 je zapotřebí 1,6–3,7 t typového minerálu. Průmyslová aplikace mineralizace CO2 je však limitována nízkou reakční rychlostí, spotřebou a energetickou náročností zpracování minerálů na velikost do 100 µm.

Tříkolonový VPSA adsorpční systém jako post-combustion CCS technologie na úrovni TRL5, Ústav energetiky FS ČVUT v Praze. (Zdroj: FS ČVUT v Praze)

Strojně-technologické řešení

Výše uvedené CO2-to-X transformace jsou považovány za perspektivní směry zpracování emisního CO2 v průmyslovém měřítku. Je třeba si uvědomit, že ne všechny zmíněné způsoby transformace jsou univerzálně použitelné. Vhodná volba zpracovatelské linky CO2-to-X musí být udržitelná v kontextu dekarbonizace a cirkulární ekonomiky. Vlastní řešení musí být založeno na vícekriteriálních rozhodovacích procesech. Tj. zda lze laboratorní nebo poloprovozní výsledky výzkumu a vývoje transformovat do úrovně technologické připravenosti TRL 8-9 (systém ověřený v provozním prostředí) při místních klimatických podmínkách, energetické a průmyslové infrastruktuře, a legislativě.

Výzkumný tým Ústavu procesní a zpracovatelské techniky Fakulty strojní významně přispívá k experimentálnímu výzkumu a průmyslovému vývoji technologií CO2-to-X, a to zejména k strojně-technologickému řešení reaktorů a bioreaktorů (experimentální analýza a modelování přenosu hybnosti, tepla a hmoty v chemických reaktorech, bioreaktorech a fotobioreaktorech pracujících při standardních i extrémních podmínkách, návrh efektivních míchacích systémů, statické a dynamické směšovače). Významný příspěvek je i v oblastech výzkumu hybridních technologií záchytu CO2 (vzájemné kombinace adsorpce, absorpce a membrána v TRL4), drcení a mletí (účinný princip rozpojování, analýza rozpojovací energie a konfigurace mlýnu), a projektování zpracovatelských linek CO2-to-X (bilancování, dynamické modelování a technicko-ekonomické posouzení).


Související články
Kompozitní materiály z přírodních zdrojů

Veřejnost se stále více snaží být environmentálně odpovědnou. Ani napříč odvětvími průmyslu tomu není jinak. V oblasti kompozitních materiálů můžeme v posledních letech sledovat stále častější tendence využívat přírodní materiály jako náhradu konvenčních syntetických produktů. Roste poptávka po vláknech na rostlinné bázi (například vláknech ze lnu, konopí nebo sisalu) a tyto materiály získávají významný podíl na celkové produkci kompozitních výrobků.

Přínos vědců pro českou ekonomiku

Výzkumná a vědecká pracoviště jsou častými nositeli průlomových objevů a řešení. Jejich přínos pro konkurenceschopnost firem a národních ekonomik je neoddiskutovatelný. Jak si vede v této oblasti Akademie věd ČR, jak spolupracuje s průmyslovou sférou a kde vidí svou přidanou hodnotu? Na toto téma jsme diskutovali s předsedkyní AV ČR profesorkou Evou Zažímalovou.

Aktuální trendy v oboru obráběcích strojů

Obor obráběcích strojů prochází velkými změnami, které pravděpodobně nejsou na první pohled tak zřetelné. Požadavky na stroje se mění v důsledku postupných proměn světa okolo nás a výrobci strojů na to reagují, aby si zajistili potřebnou konkurenceschopnost.

Související články
Projekt Národní centrum kompetence - Strojírenství dosáhl úspěšných výsledků

Projekt Národní centrum kompetence - STROJÍRENSTVÍ (NCKS) byl realizován od ledna 2019 do prosince 2022. V konsorciu bylo zapojeno celkem 26 účastníků, z toho 9 výzkumných organizací a 17 průmyslových partnerů.

Reklama
Reklama
Reklama
Reklama
Související články
MM Podcast: Glosa - Dědici evropské historie

Evropa se během relativně krátké doby proměnila z technologicky, ekonomicky i vojensky nejrozvinutějšího regionu planety v turistický skanzen s otevřeným zbytnělým sociálním systémem, na který se snaží napojit vlny přicházejících z celého světa.

Lesk a bída českých obráběcích strojů

Česká republika, resp. tehdejší Československo, mělo bohatou historii ve výrobě obráběcích strojů. Kde v období největší slávy byli ve svých inovačních počinech současní světoví lídři, když např. kovosviťácký konstruktér Ladislav Borkovec se již v roce 1977 začal zaobírat myšlenkou multifunkčního soustružnicko-frézovacího stroje? Přes dřevěný kinematický model, který si vytvořil doma v dílně, vedla dlouhá cesta až k prototypu prezentovanému  na EMO v Paříži v roce 1980. Po vyrobení 45 strojů řady MCSY, které nenazval nikdo jinak než „Boháro“, byla z ekonomických důvodů a nedostupnosti kvalitní řídicí elektroniky bohužel výroba v tehdejším Kovosvitu ukončena. Dva bývalé kovosviťáky, srdcem i duší, Jiřího Mindla a Vladislava Čítka, jsem díky jejich letitým zkušenostem celoživotního zasvěcení oboru obráběcích strojů požádal o rozpravu nad současným stavem tuzemského oboru výrobních strojů a nad tím, jaké jsou jeho případné perspektivy.

Trnitá cesta české vědy a výzkumu

Třicet let je diskutovaným tématem propojení české vědy a výzkumu s průmyslem. Podařilo se konečně v této oblasti učinit pokroky? Proč se čeští vědci nehrnou do tuzemských firem a proč české školství negeneruje kreativní osobnosti? K diskuzi o těchto otázkách jsme pozvali docenta Jiřího Krechla, který se problematice výzkumu a vývoje dlouhodobě věnuje.

160 let strojařského vzdělávání v Praze: Tištěné implantáty i oční endoskop

Moderní lékařství se neustále vyvíjí a stále více se spoléhá na inovativní materiály, diagnostické metody a technologie z jiných oborů. Proces zavádění nových materiálů a diagnostických metod v oblasti lékařství je zároveň nemyslitelný bez dlouhodobé spolupráce mezi výrobci a výzkumnými institucemi.

Role technické univerzity v udržitelné společnosti, Prof. David Tuček, UTB Zlín

Smyslem nové série podcastů je představit současnou roli univerzity a hledat její skutečné postavení a poslání ve vztahu k vývoji konkurenceschopnosti tuzemské ekonomiky a společnosti jako takové. Hovoříme s rektory a děkany technických univerzit a fakult o jejich denní operativě, o realizaci dlouhodobé strategie, jejich pohledu na ukotvení vzdělávací instituce ve společnosti a dalších tématech. Tentokráte jsme o rozhovor požádali profesora Davida Tučka, děkana Fakulty managementu a ekonomiky Univerzity Tomáše Bati ve Zlíně.

Řezné nástroje pro moderní výrobu

Trendy v obrábění kladou stále vyšší nároky i na řezné nástroje. K hlavním požadavkům na nástroje patří zejména vysoký výkon a produktivita, dlouhá doba použití, stabilita výrobní kvality, celková hospodárnost, přesnost práce, schopnost zpracování specifických materiálů, určitá forma chytrosti a konektivity a v neposlední řadě i udržitelnost při použití. Vývoj nástrojů je výrazně progresivní a vzniká tak mnoho nových technických řešení.

Kovosvit MAS a výzkumné centrum RCMT

Výzkumné centrum pro strojírenskou výrobní techniku a technologii (RCMT) při Ústavu výrobních strojů a zařízení Fakulty strojní ČVUT v Praze ze své podstaty aplikačního výzkumu již dlouhodobě spolupracuje s výrobními podniky. Patří mezi ně zejména celá řada výrobců obráběcích strojů ‒ k zásadním partnerům pak Kovosvit MAS, se kterým se spolupráce datuje hned ke vzniku pracoviště po roce 2000.

Seminář o monitoringu obráběcích operací

Měli jsme možnost zúčastnit se celodenního semináře o monitoringu obráběcích operací, pořádaného 20. října Společností pro obráběcí stroje a Ústavem výrobních strojů a zařízení Fakulty strojní ČVUT v Praze (RCMT, FS, ČVUT).

Závěrečné oponentní řízení CK-SVT

V dubnu 2012 byl na půdě Fakulty strojní ČVUT v Praze oficiálně zahájen osmi letý projekt Centrum kompetence - Strojírenská výrobní technika v rámci dotačního programu Technologické agentury ČR. Projekt byl úspěšně ukončen ke konci roku 2019 a v červnu 2020 proběhlo Závěrečné oponentní řízení ve firmě TOS Varnsdorf, jednoho ze spoluřešitelů.

Elektromobilita pro energetickou nezávislost

Téměř veškeré hlavní fosilní zdroje energie planety – ropa nebo uhlí, se nacházejí v nějak problematických oblastech, ať už místem, nebo politicky, či ekonomicky, a závislost na nich je snadno zneužitelná. Proto je snaha o energetickou samostatnost tak strategicky důležitá pro celou Evropu.

Reklama
Předplatné MM

Dostáváte vydání MM Průmyslového spektra občasně zdarma na základě vaší registrace? Nejste ještě členem naší velké strojařské rodiny? Změňte to a staňte se naším stálým čtenářem. 

Proč jsme nejlepší?

  • Autoři článků jsou špičkoví praktici a akademici 
  • Vysoký podíl redakčního obsahu
  • Úzká provázanost printového a on-line obsahu ve špičkové platformě

a mnoho dalších benefitů.

... již 25 let zkušeností s odbornou novinařinou

      Předplatit